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Abstract: We study the nonlinear fifth order (2+1) dimensional Sawada- Kotera equation with damping term using lie symmetry group. 

For this equation Lie point symmetry operators are obtained. We determine the corresponding invariant solutions and reduced equations 

using obtained infinitesimal generators. 
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1.Introduction : 

    Nonlinear phenomena are very important in applied mathematics and physics. They appear in various scientific fields such as biology, 

signal processing, viscoelastic materials, fluid mechanics, optical fiber, and  so on. Some years ago, researchers have provided many 

methods for obtaining the numerical and analytical solutions of nonlinear equation, such as tanh function method, extended tanh function 

method [1, 2] , (
  

 
) –expansion method [3, 4], sine-cosine method [5,6], simplest equation method [7] and so on. In this paper we study the 

Sawada- Kotera equation, namely 

                                       
25 5 5 0t xxx x xx x xxxxx yyu u uu u u u u u u       . 

Sawada and kotera proposed it more than thirty years ago [4]. Because many various properties are satisfied for this equation, much 

effort has been made about its exact solutions. 

For example, Fuchssteiner and Oevel studied its biHamiltonian structure [9], and a Darboux transformation was obtained for this system [10, 

11], Liu and Dai [12] accomplished the Hirota’s bilinear method to obtain exact solution of the same equation. Feng and Zheng [13] 

investigated this equation to establish traveling wave solution via the (
  

 
)-expansion method.In [14], wazwaz implemented the extended 

tanh method for constructing analytical solution of the same equation.  

 The outline of the paper is as follows. In section 2 we discuss the methodology of Lie symmetry analysis of the Sawada Kotera equation. 

Then in section 3 the solutions are obtained of the one dimensional subalgebras of the Sawada Kotera equation.In section 4 the solutions are 

obtained of the two dimensional subalgebras of the Sawada Kotera equation. Finally, concluding remarks are summarized in section 5.  

 

2.  Symmetries and classifications of Lie algebra for  

  u + ut + 5uuxxx + 5uxuxx + 5u
2
ux + uxxxxx + uyy = 0  

In order to derive the symmetry generators of Eqn.(1) and obtain closed form solution. We  consider one parameter Lie point transformation 

that leaves (1) invariant. This transformation is given by 

                   
i  

= x
i 
+ ε ξ

i 
(x, y, t ; u) + O(ε

2
),    i =1,….,4,                             (2) 

Where ξ
i
 = 

0|
ix









 defines the symmetry generator associated with (1) given by 

                       V=
i i i ix x x x

   
   

  
   

                                                 (3) 

In order to determine four components ξ
i 
, we prolong V to fifth order. This prolongation is given by the formula (4) 

(5) x y t xx xy xt yy yt tt xxx

x y t xx xy xt yy yt tt xxx

xxy xxt xxxx xxxy xxxt xxxxx xxxxy xxxxt

xxy xxt xxxx xxxy xxxt xxxxx xxxxy xxxxt

V V
u u u u u u u u u u

u u u u u u u u

         

       

         
          

         

       
       

       

 

                 (4)                                                                                                                                                                

In above expression every coefficient of the prolong generator is a functions of (x, y, t ; u) and can be determined by the formula   

                      , , ,( )i

i x y t x i y i t iD u u u u u u                                                       (5) 

                    , , ,( )i j

i j x y t x i j y i j t i jD D u u u u u u                          
 
                    (6) 

             , , ,( )ijk

i j k x y t x ijk y ijk t ijkD D D u u u u u u                                          (7) 
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           , , ,( )ijkm

i j k m x y t x ijkm y ijkm t ijkmD D D D u u u u u u                                 (8) 

         , , ,( )ijkmn

i j k m n x y t x ijkmn y ijkmn t ijkmnD D D D D u u u u u u                          (9) 

                         

Where Di  represents total derivative and subscripts of u derivative with respect to the respective coordinates. To proceed with reductions of 

(A) we now use symmetry criterion for partial differential equations. For heat equation this criterion is expressed by the formula 

                       
(5) 2[ 5 5 5 ] 0t xxx x xx x xxxxx yyV u u uu u u u u u u      

                                 (10)
 

Whenever, 

                        
25 5 5 0t xxx x xx x xxxxx yyu u uu u u u u u u        

Using this symmetry criterion with (4) in mind immediately yields 

                        
25 5 5 0t xxx x xx x xxxxx yy                                                         (11) 

At this stage we calculate expression for 
t ,

xx and
yy  using (5)-(9), substitute them in (9) and then compare coefficients of various 

monomials in derivatives of u. This yields the following system of over determined partial differential equations 
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3. Reduction of one dimensional abelian subalgebra for  

                                                             u + ut + 5uuxxx + 5uxuxx + 5u
2
ux + uxxxxx + uyy = 0 

After some more manipulations one finds that   and   become 

                                         
1

3

k

k








                                                                   (12) 

The remaining equations can then be used to determine   and   as 

                                         
2

0

k






                                                                    (13) 

As this stage we construct the symmetry generators corresponding to each of the constants involved. These are a total of eight generators 

given by 

                                           

1

2

3

V x

V t

V y

 

 

 

                                                                (14)       

It is easy to check that the symmetry generators found in (13) form a closed Lie algebra whose commutation relations are given in table 1. 
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Table 1 

 

[Vi ,Vj] 

 

 

V1 

 

V2 

 

V3 

 

V1 

 

0 

 

0 

 

0 

 

V2 

 

0 

 

0 

 

0 

 

V3 

           

0 

 

0 

 

0 

Commutation relations satisfied by generators 

 

4. Reductions of two dimensional abelian subalgebra for  

                                        u + ut + 5uuxxx + 5uxuxx + 5u
2
ux + uxxxxx + uyy = 0 

We now briefly show steps involved in the reduction of the nonlinear heat equation to a second order differential equations. Since reduction 

under all the subalgebra’s cannot be given in the paper, we restrict ourselves to giving reductions in one case only. 

                                                      i.e.,{V1,V3}and{V2,V3}. 

Reduction in the remaining cases is listed in the form of Appendices A at the end of the paper. 

 

4.1 Reduction under V1 and V3 

From Table 1 we find that the given generators commute [V1,V3]=0. Thus either of  V1 or V3 can be used to start the reduction with. For our 

purpose we begin reduction with V1. The characteristic equation associated with this generator is 

                                                                
1 0 0 0

dx dy dt du
    

Following standard procedure we integrate the characteristic equation to get three similarity variables 

                                                     r = y,        s = t,          u = w(r,s)                                 (15) 

Using these similarity variables Eqn.(1) can be recast in the form 

                                                    W+Ws+Wrr=0                                                             (16) 

At this stage we express V3 in terms of the similarity variables defined in (14). It is straightforward to note that V3 in the new variables takes 

the form 

                                                     
3V

r





                                                                      (17) 

The characteristic equation for 
3V  is 

1 0 0

dr ds dw
  . Integrating this equation as before leads to new variable s   and ( ) w   , 

which reduce (15) to a second order differential equation 

                                                     0                                                                     (18) 

 

4.2 Reduction under V2 and V3 

In this case the two generators V2 and V3 satisfy the commutation relation [V2,V3] = 0.This suggests that reduction in this case should start 

with V2.The similarity variables are 

                                                       r = x,     s = y,    u = w(r,s) 

The corresponding reduced partial differential equation is 

                                                       W+5WWrrr+5WrWrr+5W
2
Wr+Wrrrrr+WSS=0           (19) 

The transformed V3 is 

                                                        
3V s                                                                      (20) 

The invariants of  
3V  are r   and ( ) w    which reduce (18) to the ordinary differential equation 

                                                      
25 5 5 0                                       (21) 

Reductions in remaining cases using generators forming sub-algebra are given in the form of Table 2 in Appendix A 

 

Appendix A 
Table 2 

 

Algebra 

 

Reduction 

 

[V1,V2]=0 

 

0    

 

[V1,V3]=0 

 

0    

 

 

[V2,V3]=0 

 

.
25 5 5 0                
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5. Conclusion: 

        In this work, we used the Lie group method to find the Lie point symmetries of the Sawada Kotera equation, which concludes to 

similarity variables. We utilized the corresponding invariant solution to reduce the number of independent variables in the Sawada Kotera 

equation. Also, we have obtained an optimal system for the Sawada Kotera equation 
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